

The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network Architectures

Yawei Li

Wen Li

Martin Danelljan

Kai Zhang

Shuhang Gu Luc Van Gool Radu Timofte

Cost-free Fine-grained Architecture Optimization

Neural Architecture Design

Manual Design

Architecture Optimization

Hints: Lottery Ticket Hypothesis (Unstructured)

• MNIST

Observation 1: Pruned network performs better than the original network.

[1] Jonathan Frankle, Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. ICLR 2019.

ETH zürich

Hints: Channel Pruning (Structured)

- Tiny-ImageNet
- α : width multiplier

Observation 2: Channel pruned network outperforms the original network under different model complexities.

[1] Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, Radu Timofte. DHP: Differentiable Meta Pruning via HyperNetworks. ECCV 2020.

ETH zürich

Limitation of Previous Work

- The lottery ticket hypothesis is only valid under the setting of weight removal.
 - Extension to architecture optimization in terms of channel reconfiguration is not studied.
- The optimized network architectures are derived under different training protocols (epoch).
 - Where the improvement comes from.
- Small dataset (MNIST, Tiny-ImageNet).

The Heterogeneity Hypothesis: The Existence of LW-DNA models

The Heterogeneity Hypothesis

Question I: The existence LW-DNA models

With the same training protocol, there exists a layer-wise differentiated network architecture (LW-DNA) that can outperform the original network with regular channel configurations but with a lower level of model complexity.

- ✓ The same training protocol
- ✓ LW-DNA
- ✓ Lower level of model complexity
 - Parameters
 - Computation

The Heterogeneity Hypothesis

Question I: The existence LW-DNA models

Network	Method	Top-1 Error (%)	FLOPs [G] / Ratio (%)	Params [M] / Ratio (%)
ResNet50	Baseline	23.28	4.1177 / 100.0	25.557 / 100.0
	LW-DNA	23.00	3.7307 / 90.60	23.741 / 92.90
RegNet-4GF	Baseline	23.05	4.0005 / 100.0	22.118 / 100.0
	LW-DNA	22.74	3.8199 / 95.49	15.285 / 69.10

Methodology How to identify LW-DNA models

3.0

2.5

Đ 2.0 ş

Ĩ 15

0.5

0.0

2.00

1.75

1.50

1.25

1.00 0.75

0.50

0.25 0.00

Question 2: How to identify an LW-DNA model efficiently?

- Starting from a baseline architecture •
- **Cost-free architecture optimization** \bullet
 - Fair comparison
- Single-shot network shrinkage
 - Initialize a network
 - Prune the initialized network
 - Train the pruned the network
- Why single-shot? \bullet
- **Two problems:** \bullet
 - 1. Unable to grow a layer
 - 2. Unstructured pruning

1000

1000

- Problem One: Unable to grow a layer
- Channel configuration vector in the configuration space
 - Assembly of channel number into a vector.

Question 2: How to identify an LW-DNA model efficiently?

• Problem One: Unable to grow a layer

- Problem One: Unable to grow a layer
 - Solution: Expand the network by an upscaling factor

- Problem One: Unable to grow a layer
 - Solution: Expand the network by an upscaling factor
 - Constrain the minimum channel width by a factor ρ

- Problem One: Unable to grow a layer
 - Shrink to the optimal solution \boldsymbol{c}'

Question 2: How to identify an LW-DNA model efficiently?

- Problem 2: Unstructured Pruning
 - Reparameterization of the network

Hypernetwork takes latent vectors as input.

[1] Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, Radu Timofte. DHP: Differentiable Meta Pruning via HyperNetworks. ECCV 2020.

Question 2: How to identify an LW-DNA model efficiently?

- Problem 2: Unstructured Pruning
 - Reparameterization of the network

Hypernetwork.

[1] Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, Radu Timofte. DHP: Differentiable Meta Pruning via HyperNetworks. ECCV 2020.

=TH zürich

Question 2: How to identify an LW-DNA model efficiently?

Steps of the architecture optimization method

ETH zürich

Explanation: Why LW-DNA models performs better?

Question 3: How to explain the benefits of LW-DNA?

- CNNs are redundant.
 - It is possible to find a layer-wise specific channel configuration comparable with the baseline under lower model complexity.
- The redistribution of computational budget could help to improve the performance.

Question 3: How to explain the benefits of LW-DNA?

- Maybe related to overfitting
 - Evidence one: training and test log.

ETH zürich

Question 3: How to explain the benefits of LW-DNA?

• Maybe related to overfitting

 Evidence three: On the same dataset, it is easier to identify an LW-DNA model version for larger networks than for smaller networks.

Dataset	Network	Method	Top-1 Error	(%)	FLOPs [G] / Ratio (%)	Params [M] / Ratio (%)
ImageNet [6] —	PosNot50 [14]	Baseline	23.28		4.1177 / 100.0	25.557 / 100.0
	Keshelsu [14]	LW-DNA	23.00		3.7307 / 90.60	23.741 / 92.90
	RegNet [39]	Baseline	23.05		4.0005 / 100.0	22.118 / 100.0
	X-4.0GF	LW-DNA	22.74		3.8199 / 95.49	15.285 / 69.10
	MobileNetV3 small [16]	Baseline	34.91		0.0612 / 100.0	3.108 / 100.0
	Woonervet v 5 sman [10]	LW-DNA	34.84	J	0.0605 / 98.86	3.049 / 98.11

Table 4: Image classification results.

Question 3: How to explain the benefits of LW-DNA?

• Maybe related to overfitting

Evidence two: The accuracy gain of an LW-DNA model is larger for smaller datasets (Tiny-ImageNet) compared with larger datasets (ImageNet).

Dataset	Network	Method Top-1 Error (%)) FLOPs [G] / Ratio (%)	Params [M] / Ratio (%)	
ImageNet [6]	MobileNetV3 small [16]	Baseline LW-DNA		34.91 34.84	0.0612 / 100.0 0.0605 / 98.86	3.108 / 100.0 3.049 / 98.11
Tiny-ImageNet	MobileNetV1 [17]	Baseline Baseline KD LW-DNA		51.87 48.00 46.44	0.0478 / 100.0 0.0478 / 100.0 0.0460 / 96.23	3.412 / 100.0 3.412 / 100.0 1.265 / 37.08
	MobileNetV2 [44]	Baseline Baseline KD LW-DNA		44.38 41.25 40.74	0.0930 / 100.0 0.0930 / 100.0 0.0872 / 93.76	2.480 / 100.0 2.480 / 100.0 2.230 / 89.90

Table 5: Image classification results.

Extension to other vision tasks

• Visual Tracking

Metric	DiMP-Baseline	DiMP-LW-DNA		
	TrackingNet [36]			
Precision	68.06	68.27		
Norm. Prec. (%)	79.70	79.64		
Success (AUC) (%)	73.77	73.83		
	LaSOT [8]			
Precision	54.97	57.30		
Norm. Prec. (%)	63.70	65.82		
Success (AUC) (%)	55.87	57.43		

Table 3: Tracking test results. DiMP-LW-DNA and DiMP-Baseline use the identified LW-DNA and baseline version of ResNet50, respectively.

Figure 6: Success plot on the LaSOT dataset for visual tracking.

Extension to other vision tasks

• Single image super-resolution

Network	Method	PSNR $[dB]$					FLOPs $[G]$ /	Params [M] /
		Set5 [2]	Set14 [52]	B100 [35]	Urban100 [19]	DIV2K [1]	Ratio (%)	Ratio (%)
SRResNet [23]	Baseline	32.02	28.50	27.52	25.88	28.84	32.81 / 100.0	1.53 / 100.0
	LW-DNA	32.07	28.51	27.52	25.88	28.85	28.79 / 87.75	1.36 / 88.43
	Baseline	32.10	28.55	27.55	26.02	28.93	90.37 / 100.0	3.70 / 100.0
EDSK [29]	LW-DNA	32.13	28.61	27.59	26.09	28.99	55.44 / 61.34	2.84 / 76.94

Table 2: Results on single image super-resolution networks. The upscaling factor is $\times 4$.

Conclusion

Conclusion

- We empirically validate the heterogeneity hypothesis proposed in this paper.
 - It's possible to identify an LW-DNA model.
 - This could be used as a post-searching mechanism complementary to semi- or fully automated neural architecture search.
- Secondly, an almost cost-free fine-grained architecture optimization method is proposed.
 - This method only needs the computation of one random batch.
- Thirdly, the possible reason for the improved performance of an LW-DNA is explained by observing the experimental results.

Thanks for your attention! Q&A

